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Resonant interactions between topographic planetary 
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The resonant interactions between topographic planetary waves in a continuously 
stratified fluid are investigated theoretically. The int,eracting waves form a resonant 
triad and travel along a channel with a uniformly sloping bottom. The basic state 
stratification in the channel is characterized by a constant buoyancy frequency. The 
existence of solutions to the quadratic resonance conditions is established graphically. 
Each wave by itself is a bottom-intensified oscillation of the type discovered by 
Rhines (1970) except for the addition of a small positive frequency correction. This 
correction must be included to satisfy higher-order terms in the bottom boundary 
condition. For strong stratification (r2 a L2, where r = internal deformation radius 
and L = channel width), the waves are strongly bottom-trapped and this frequency 
correction is negligible. For weak stratification (r2 < L2) the waves are barotropic and 
the frequency correction is 0(8) ,  where 8 = fractional change in depth across the 
channel. In  many oceanic contexts, 8lies in the range 0.1-0-4 and therefore this correc- 
tion can produce a significant change in the phase speed. The amplitudes of the waves 
in the triad obey the classical gyroscopic equations usually encountered in quadratic 
resonance problems. In  particular, the amplitudes evolve on the slow time scale 

t = O ( l / f , 8 2 ) ,  

which for our scaling assumptions is also O( l/fo Ro), where Ro is the Rossby number. 
The results are applied to the Norwegian continental slope region. It is shown that, in 

this vicinity, there may exist resonant triads consisting of two short, high-frequency 
waves (periods around 3-4 days) and one long, low-frequency wave (period around 
9 days). 

1. Introduction 
Several investigators have recently suggested that the observed fluctuations of 

various ocean current systems flowing along steep bottom slopes may be due to baro- 
clinic instability of the mean flow (Smith 1976; Mysak & Schott 1977; Mysak 1977; 
J. A. Helbig 1977, private communication). In each of these studies, the traditional 
theory (e.g. see Pedlosky 1964) of baroclinic instability of a channel flow along a 
uniform slope is applied in an attempt to explain the presence of current and temp- 
erature fluctuations which are characterized by periods of a few days and wavelengths 
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of 100 km or less. In the development of this traditional theory, it is assumed that 
Ro/S = O(l) ,  where Ro denotes the Rossby number of the mean flow (Ro = U / f o L ,  
where U = horizontal velocity scale, fo = mean value of the Coriolis parameter and 
L = channel width) and 6 denotes the fractional change in depth across the channel 
(6 = aL/H,  where a = bottom slope and H = characteristic channel depth). Physi- 
cally the assumption Ro/6 = O( 1 )  means that the destabilizing influence of the vertical 
shear can effectively compete with the possible stabilizing influence of the bottom 
slope. A second assumption in the traditional theory is that the wave restoring forces 
associated with topography and a variable Coriolis parameter are comparable. Third, 
it is assumed in the theory that the motions are characterized by the advective time 
scale L j U .  

An examination of the velocity, time and length scales associated with the flows 
studied by the authors mentioned above reveals that the above three assumptions are 
not strictly valid. Thus there is some question as to whether the traditional theory of 
baroclinic instability is relevant in each of the situations considered. The flows studied 
in these papers (the Denmark Strait overflow, the Norwegian Current, the California 
Undercurrent and the Strait of Georgia mean current) are fairly weak and are of 
variable width; however, each is characterized by a Rossby number Ro = O( For 
example, the California Undercurrent off Vancouver Island is characterized by 
U = 20 cm/s, fo = 1.1 x 10-4  s-1 and L = 50 km, giving Ro = 3.6 x On the other 
hand, the bottom slope beneath each of these flows is relatively large, with a typically 
O(10-2); the corresponding value of 6 in each case is O( 10-l). For the California Under- 
current example referred to above, a = 1.9 x and H = 2500m, giving 

6 = 3.8 x 10-1. 

Therefore, in each of these regions RoIS = O( l O - l ) ,  rather than O( 1) as assumed in the 
traditional theory. Physically speaking, this means that the destabilizing influence of 
vertical shear is dominated by the stabilizing influence of topography. Further, it is 
well known (LeBlond & Mysak 1978, chap. 3) that, when the bottom slope 

a = 0(10-2) ,  

a sloping topography completely dominates the earth's curvature effect (the beta 
effect) as a restoring force for low-frequency wave motions. Hence, the second assump- 
tion of the traditional theory is invalid in each of these regions. Finally, for the weak 
flows considered, the advective time scale L/ U typically corresponds to a period of 
several weeks to a few months, which is considerably longer than the periods observed 
(a few days). The observed temporal fluctuations in each case are more aptly charac- 
terized by the shorter time scale l/fo 6, which is the characteristic time scale for topo- 
graphic planetary waves. 

In  summary, the motions in the different regions studied by the above authors are 
characterized by the parameter inequalities 

R o < 6 < 1  (1 .1 )  

and 

where $o = mean latitude and R = radius of the eart'h. The inequality (1 .2)  reflects the 
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dominating influence of topography over the beta effect. Moreover, it is noted that in 
the regions studied 

This relation and (1.1) express the fact the nonlinearities are weak, and that the 
lowest-order flow will be linear and governed by topography. Further, a more realistic 
time scale for the motions is 

Finally, it isnoted that t,he Burgersnumber is characteristically of order unity, namely 

RO - (L/R)cot+, = O(S2). (1.3) 

t - l/f0S. (1.4) 

(1.5) B = r2/L2 = O(l ) ,  

where r denotes the internal deformation radius. 
In  the traditional theory of baroclinic instability, as developed in Pedlosky (1964), 

only (1.5) holds. Otherwise, it is assumed that the appropriate time scale is the advec- 
tive ' mesoscale' time L/U and that the following ordering applies: 

RO - (L/R) cot$, - 8 < I.  

These considerations motivated the author to formulate the problem studied in this 
paper. It will be shown that the assumptions (1.1)-( 1.5) naturally lead to the study of 
resonant interactions between topographic planetary waves in a stratifled fluid. In  
such resonant interactions i t  is required that the nonlinearities be weak so that the 
waves involved are basically linear and have topography as their restoring force. Then 
the energy transfers between t.he waves will take place over a time that is long compared 
with the wave period. This will be the case if we choose our scaling to be consistent with 
the parameter ordering (1.2) and (1.3). In  the theory of baroclinic instability with 
topography, on the other hand, the scales are chosen go that nonlinearities and topo- 
graphy are of equal importance. Then the energy transfers between the waves and the 
mean flow take place over a much shorter time scale, of the order of the wave period. 
To have a clear picture of the types of waves involved in these interactions, we now 
briefly discuss the lowest-order, non-trivial flow. 

To the zeroth order in the expansion parameter S, the wave motion discussed here is 
geostrophic and the geostrophic pressure p(O' satisfies a liltear potential vorticity 
equation. For a channel with a uniform bottom slope containing a fluid with constant 
stratification (i.e. B = constant), this equation and the associated boundary conditions 
have the travelling-wave solution (Rhines 1970) 

p$= A,sinmnxeos(ly-w,t)cosh K,BB(z- 1) (1.6) 

with dispersion relation w, = 1 B*/K, tanh K,B#, (1.7) 

where K, = (m2n2+P)B and m is a positive integer (see also $4). In  (1.6) x and y (the 
cross-channel and long-channel co-ordinates) have been scaled by L, z (the vertical 
co-ordinate) by H ,  and t by l/foS (see 1.4); p(O) has been scaled by p* LUf, (p* = con- 
stant reference density). In  the limit B+O (a homogeneous ocean), pt0) becomes 
independent of depth (the motion is barotropic) and (1.7) reduces to w, = Z/K&, the 
familiar dispersion relation for a non-divergent topographic planetary wave. In the 
limit B -+ 00 (strong stratification) on the other hand, ( 1  5)  implies that the motion is 
bottom intensified and the corresponding dispersion relation is w, = 1 B*/K,, which 

2G-2 
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represents the frequency of a long period buoyancy oscillation. Under the assumption 
(1.3), the boundary-value problem for the first-order pressure p(l), where 

p =p@)+Sp(l)+ ..., 
can be readily formulated. (We note here that p denotes the total pressure minus the 
static hydrostatic pressure.) It is the consideration of the boundary-value problem for 
p(') that leads to the study of a resonant triad of waves, in which each wave is of the form 
(1.6) and has (1.7) (with a small correction added on) as the dispersion relation. 
However, the amplitude of each wave in this triad is now a function of the slow time 
variable T = St. The novel feature about this resonant interaction problem is that the 
amplitude equations are derived by applying the usual closure condition (elimination 
of secular terms) to the bottom boundary condition for pc'). In  most quadratic resonant 
interact'ion problems the closure condition is applied to the governing differential 
equation for the first-order field. 

The study of resonantly interacting planetary waves on the beta plane has had a long 
history. The barotropic problem has been examined by Kenyon (19641, Longuet- 
Higgins & Gill (1967), Newell (1969) and Plumb (1977). The baroclinic case has been 
studied by Newell (1972), Loesch (1974), Pedlosky (1975), Richman (1976) and Loesch 
t Domaracki (1977). Inall t'hese planetary wavestudies, however, the fluid is taken to 
be of constant depth. It appears that the subject of resonant interactions between 
topographic planetary waves (which is discussed here) has never been treated in the 
literature. 

Despite t.he elegance of resonant interaction theories, tests of them in the ocean or 
in t,he laboratory are notoriously difficult to perform. To date, the most successful 
resonant interaction experiments have been performed in connexion with capillary, 
gravit,y and internal waves [see LeBlond & Mysak (1978, chap. 6)) for a brief survey 
of these experiments]. There have been no reports of experiments that successfully 
identified resonant planetary wave triads in the ocean. Part of the problem may be 
that most of the earlier work has dealt only with interactions between discrete waves, 
whereas observations in the ocean suggest that energy transfers in the frequency (0) 

and wavenumber ( 1 )  spectra occur continuously over a broad band of w ,  1 space. Thus 
it is conceivable that, if resonant interactions between topographic waves are to be 
observed in the ocean over steep bottom slopes, the theory described in this paper will 
have to be extended to the continuum case. In  particular, the governing transport 
equation for the wave action spectrum will have to be integrated numerically. 

The order of the presentation will be as follows. The governing equations of motion 
are introduced in $2, which is followed by the formulation of the boundary-value 
problems for the zeroth-order and first-order pressure fields p(O) and p(l) ( 0  3). The solu- 
tion for a single wave is then given in $4. We begin the analysis of a resonant triad of 
wa-ves in $5,  where graphical solutions to the resonance conditions are also given. The 
governing nonlinear differential equations for the slowly varying amplitudes of the 
resonant waves are derived in $ 6 and their qualitative behaviour is discussed in $ 7. 
Finally, in $8  the results are applied to the Norwegian Current. 
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2. Governing equations 
We shall focus our attention on the quasi-geostrophic motions of a stably stratified, 

inviscid fluid lying in an infinitely long, variable-depth channel of arbitrary orientation 
(figure 1). The channel has vertical walls at  x = 0, L, a rigid horizontal lid at  z = H ;  the 
equation of the channel floor is given by z = SHb(x). Here 6 represents the fractional 
change in depth across the channel, a non-dimensional parameter which is assumed to 
be small. The function b(x)  describes the bottom profile and, being dimensionless, is 
assumed to be O( 1); also b(0)  = 0. As an example, consider a channel of uniform bottom 
slope a. In this case 

6 = a L / H  (2-1) 
and b(x) = x / L .  (2.2) 

In  many oceanic situations of interest, including those described in 0 1, L 9 H and 
therefore (2.1) implies that S $ a. However, because the bottom slope itself is usually 
very small, in these same situations S is still considerably less than unity. 

To describe the fluid motions in the channel, we begin with the following adiabatic 
equations : horizontal Du 1 --fv+-pZ = 0, 

momentum : Dt P* 
1 Dv -+fu+-pT = 0, 

Dt P* 
hydrostatic: PT = - pTg ,  
continuity: v.u  = 0, 

(2.3a) 

(2.3b) 

incompressibility : - - 0,  Dt 

where (u, v ,  w )  are the velocity components in the (5, y, z )  directions respectively, 
p* is a constant reference density (the Boussinesq approximation has been made in 
(2.3)))  pT and p T  denote the total pressure and density respectively, 

~ a a a  a -- Dt - at+u-+v-+w- 
ax ay az 

and 

where fo = 2Q sin $o is the value of the Coriolis parameter evaluated at  the reference 
latitude g50 and R = radius of the earth. The condition of zero normal flow across the 
boundaries of the channel implies that 

f = fo[l + R-1 cot $o (xsin v + y cos v)], (2.8) 

u = O  at x=O,L,  (2.9) 
w = O  a t  z = H ,  (2.10) 

(2.11) 
db 
dx w = SHu- a t  z = SHb(x). 

We now introduce the following non-dimensional dependent and independent 
variables (denoted by primes): 

(2.12) I X ,  y = L(x’, y’), 
U , V  = U(U’,V’), 

z = Hz’, 
w = (&HU/L)W’, 

t = ( foS)-’ t ’ ,  

PT = PO(Z) + (P*fo L U )  P‘, PT = PO(4 + (P*fOLU/SH) P‘, 
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FIGURE 1. (a) Plan view and (b) cross-section of channel showing co-ordinate system and bottom 
topography. It is assumed that 0 < S < 1 and b(z)  = O( I ) ,  b(0)  = 0. The channel is situated on 
the beta plane and therefore the Coriolis parameter f varies linearly with latitude. 

where U denotes a characteristic horizontal velocity and p,, po denote the basic state 
hydrostatic pressure and density, i.e. dp,/dz = -peg. Since the fluid is assumed to be 
stably stratified, the square of the buoyancy frequency is positive, nameIy 

g dP0 W ( x )  = --- > 0. 
P* 

(2.13) 

The scales used in (2.12) are in keeping with those generally used in studies of quasi- 
geostrophic motions (Pedlosky 1964)) except for our choice of the time scale, which 
reflects the dominating influence of topography over nonlinearity. Substituting (2.12) 
into (2.3)-(2.8) and then dropping the primes, we obtain the following system of 
equations : 

6ut + S2y(uuz + VU, + ~wu,)  - [ 1 + S2/3(z sin v + y cos v)] w +p, = 0, (2.14) 
6v,+SZy(~v,+vv,+6ww,)+~1+62/3(~sinv+ycosv)]~+p, = 0, (2.16) 

P, = -P ,  (2.16) 
(2.17) 

P ~ + ~ G ~ ( ~ P ~ + v P , + S W ~ , ) - B ( Z ) W  = 0, (2.18) 
U, + vg + S U ~ ~  = 0, 
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where 
(2.19) 

(2.20) 

(2.21) 

denote respectively the inertial factor, the planetary vorticity factor and the Burgers 
number. In (2.19) and (2.21) we have also introduced the familiar Rossby number, Ro, 
and the internal deformation radius, r .  The non-dimensional forms of the boundary 

(2.22) conditions (2.9)-(2.11) are = at = o, 1, 

w = O  at z = 1 ,  (2.23) 
db 
dx  w =u-  at z =Sb. (2.24a) 

We wish to emphasize here that, in ( 2 . 2 4 ~ ) ’  b is written in termsof thenon-dimensional 
cross-channel co-ordinate. Thus for the linearly varying bottom profile (2.2), b in 
( 2 . 2 4 ~ )  takes the simple form b = x. 

In  accordance with (1.3) and (1.5) we shall assume that y ,  /3 and B(z) are each of order 
unity.Thus (2 .14)-(2.24~)  contain only one small parameter, S = O(l0-l), a fact which 
we shall exploit in 0 3. However, before proceeding to the next section, we first expand 
the bottom boundary condition ( 2 . 2 4 ~ )  in a Taylor series about z = 0: 

db 
dx  w+w,6b = (u+u,Sb) - + O ( P )  at z = 0. (2.24 b) 

3. Asymptotic solution of governing equations 
TO avoid the occurrence of secular terms in the subsequent analysis, we now allow 

each dependent variable to depend on two time variables, a ‘fast’ time t and a ‘slow’ 
time T, the latter being defined by = 

Thus Q = Q(x,  y, z, t ,  T ) ,  where Q stands for any of the dependent variables. Accord- 
ingly, the time derivative in the non-dimensional equations (2.14)-(2.18) transforms 

(3.1) 

(3.2) 
&S a, -+ a, + &a,. 
We shall see later (0 6) that the amplitudes of resonantly interacting waves will evolve 
on the slow time scale T. 

We now assume that each dependent variable has an asymptotic expansion of the 
form 

The substitution of (3.2) and (3.3) into (2.14)-(2.18) and the boundary conditions 
(2.22), (2.23) and (2.248) then yields a hierarchy of equations. To O(So) we obtain the 
geostrophic equations 

Q - Q(0) + SQ(l) + S2Q(2) + . . . as 6-t 0. (3.3) 

- D(0) + p p  = 0, (3.4a) 

(3.5) p f u  = - (0) 

@)+D!) = 0, (3.6) 
pp’-B&O) = 0, (3.7) 

,CO)+pIp’ = 0, (3.4b) 

P ’  
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with boundary conditions 
d o )  = 0 at x = 0,1, 
do)= 0 a t  x = 1, 

(3.10) db 
dx 

d o )  = ~ ( 0 ) -  at = 0. 

The O(S) equations and boundary conditions are 

u p  - w(1) + p p  = 0,  (3.1 1 a) 
w p  + u(') + p y  = 0, (3.1 1 b) 

(3.12) 
u p  + w(1) Y + w p  = 0) (3.13) 

(3.14) 
u(') = 0 a t  x = 0,1, (3.16) 
dl)= 0 at z = 1, (3.16) 

(3.17) 

Of the O ( P )  equations and boundary conditions, all that will be needed for our 
purposes here are the second-order horizontal momentum and continuity equations : 

(3 .18~)  
(3.18 b) 

.p + wf) + w(1) 2 - 2  - 0 (3.19) 

where pl = pcosv, p2 = psinv. (3.20) 

We now derive the vorticity balance equations for p(O) (the geostrophic pressure) and 
p(l). Since p(O) behaves like a stream function, (3.6) is redundant and the zeroth-order 
problem is indeterminate. The equation for p(O) is therefore obtained by cross-differen- 
tiating (3.1 l ) ,  the first-order momentum equations, and then eliminating all the 
variables in favour ofp(O) by employing (3.4), ( 3 4 ,  (3.7) and (3.13). The result is 

[V2p(O) + (B-'pp)Jt = 0, (3.21) 

where V 2  = axx+ Jug .  Equation (3.2l)expresses the fact that (the lowest-order) poten- 
tial vorticity is conserved. Because of our scaling assumptions, (3.21) is linear and the 
potential vorticity consists of only the relative vorticity part (first term) and the in- 
terior vortex stretching part. Integrating (3.21) with respect to t and setting the 
function of integration equal to zero gives 

V2p(O) + (B-'pp), = 0. (3.22) 

Equation (3.22) holds only if there are no sources or sinks of vorticity, a condition 
which we &hall assume throughout the remainder of this paper. Using (3.4b)) (3.5) and 
(3.7), the boundary conditions (3.8)-(3.10) take the form 

p p  = - P )  (1) 

pi') +p$) + y(u(0)pP) + v(O)p('J)) Y - Bd') = 0, 

db 
d1) + wc,O)b = ( ~ ( 1 )  + u',O)b) - at z = 0. dx 

up +up + y(u(0)ug) + dO)u(O)) Y - d 2 )  - (p' y +p2 x) d o )  +pg' = 0, 
w p  + w p  + y(u(0'Wg' + d 0 ) W y )  + u(2) + (pl y + p2 x) u(0) + p r )  = 0) 

pL$) = 0 at x = 0, 1 ,  
pL$) = o at x = 1, 

(3.23) 
(3.24) 
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The equation for p(1) is obtained by first cross-differentiating (3.18) to eliminate 
p(2); a lengthy series of substitutions involving (3.19) and the lower-order equations 
fmally yields 

[V'p'') + (B-lp~''),]t = p2p',0' - pio' - [v2p(o) + (B-lpioO')z]T 
+~J[V2p(0)+(B-1p~o))Z,p(o) ] ,  (3.26) 

where J ( f , g )  = f x g , - f , g x  denotes the Jacobian operator. Because we have taken 
(3.22) as the governing equation for p(O), the last two terms on the right-hand side of 
(3.26) drop out and we are left with 

[V2p(l) + (B-lpil))s]t = /3.-&f) - p1pp'. (3.27) 

The boundary conditions (3.15)-( 3.17) become 

&)= -p!$ a t  x = 0, I ,  (3.28) 

p p  = -pL$ - yJ(p(O), p p )  a t  z = 1, (3.29) 

B-lp$;)- ( 1 ) -  db = 1 (0) B-lyJ(p(O),pkO)) - B- PsT - p y  dx 

In  the subsequent sections we shall discuss the travelling-wave solutions of the 
above systems of equations for p(0) and ~ ( 1 ) .  First, in $4, we shall determine the single- 
wave solution for p(O) and its correction p(1) and second, in $$5-8, we shall study the 
behaviour of a resonant triad of waves. We mentioned earlier tha t  it is the boundary- 
value problem for p(l) that is important for the resonant wave triad study. This is 
because it is from the bottom boundary condition for p(l) that we get the amplitude 
equations that describe the slow time evolution of the wave triad. We do not need the 
solution for p(1) itself for the resonant triad study, but we include it here for the sake of 
completeness. We find, for example, that p(1) has components both in phase and in 
quadrature with ~ ( 0 ) .  

4. Single-wave solution 
We now suppose that B = constant (i.e. N = constant) and that the channel has a 

uniform bottom slope, so that b = x (see sentences following (2.24a)). Thentravelling- 
wave solutions of (3.22)-(3.25) can be readily written down in terms of elementary 
functions. The solution for a single wave corresponding to a given crosa-channel mode 
m has the form 

p(O) = A,(T) sin mnx cosh K ,  Bi(z - 1)  exp [i(ly - w, t ) ] ,  

urn = 1 B i l K ,  tanh K,B*. 

(4.1) 

(4.2) 

where K ,  = (m2n2 + 1 2 ) & ,  m = 1,2,  ..., and w, and 1 are related through 

The amplitude function A,(T) will be determined at  the next order. Without loss of 
generality, we take 1 > 0 so that (4.2) implies that 0, > 0; thus the phase of the wave 
travels in the positive y direction (see (4.1)). Examples of the dispersion curves for 
different modes are plotted in figure 2. Note that for sufficiently small B (weak 
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I- 
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s 
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FIGURE 2. Dispersion curves as given by (4.2) for the first five cross-channel modes (m = 1 ,  ..., 6 ,  
the numberson thecurves) for various values of the Burgers number B = r2/L2, where r = inter- 
nal deformation radius and L = channel width. w, = frequency and I = wavenumber. Note 
that the vertical scale in ( d )  has been magnified about tenfold. 
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stratification), the dispersion curve for a given mode m has a zero slope at some inter- 
mediate value of k = k, and hence the group velocity cg < 0 for k > k,. That is, the 
energy of the very short waves in a weakly stratified fluid propagates in the negative y 
direction, in opposition to the phase velocity. 

For the case of weak stratification (B < l), (4.1) and (4.2) reduce to the barotropic 
topographic planetary wave solution: 

p(0) = A,(T)sinmnxexp [i(Zy-o,t)], 
W, = l/KL. (4.3) 

p(O) = +A,(T)sinrnnxexp[KB*(l - z ) + i ( Z y - w , t ) ] .  (4.4) 

W, = lB)/K,. (4.5) 

For strong stratification (B & 1) on the other hand, the motion is bottom intensified: 

In this limit, the dispersion relation takes the form 

Convincing observational evidence of these bottom-trapped waves in the ocean, first 
predicted theoretically by Rhines (1  970), has only recently been presented (Thompson 
& Luyten 1976). 

The solution of (3.27)-(3.30) in which B = constant, b = x and ptO) is given by (4.1) 
is not trivial. Substitution ofp(0) into (3.27)-(3.30) (with B = constant, b = x) yields 

V2p(tl) + B-lpLiI = A,(/3, il sin mnx - pl mn cos mnx) cosh K, B ~ ( z  - 1) exp (ie,), 
(4.6) 

p::) = 0 at z = 1, (4.8) 

pf) = iw, A ,  mn cos mnx cosh K,Bi(z - 1) exp (i8,) at x = 0, 1, (4.7) 

B-lpii)- pv (11 = (K,/B*)sinh K,,B*sinmnxexp (iem)- dAm 
dT 

- iw, mm cosh K, Bt cos mnx exp (ie,) A ,  

+ i ( lK,  Bilsinh K, Bi) x sin mnx exp (ie,) A ,  at z = 0, (4.9) 
where for short em = zy-o,t. (4.10) 

We write the solution for p(') in the form 

(4.11) 

pL: = (gxcosmnx--xsinmnx $31 (AJw, )  coshK,B*(z- l)exp(ie,) 
2 

(4.12) 

iP1 a,sinnnx--xsinmnx (A,/w,)coshK,B)(z- l)exp(iB,), 2mnn,l 2 = (82" 
-6mn for n = m ,  

a, = -2n/n(n2-m2) for n+m even, i 2n/n(n2-m2) for n + m  odd. 

in which 

Clearly pgi is a particular solution to (4.6) which satisfies ap(l)/ay = 0 at x = 0, 1, the 
boundary condition (4.8), and B-lpL;)-p'y) = Oat z = 0. The function pk? represents a 
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homogeneous solution of (4.6) which is chosen to satisfy (4.8) and the inhomogeneous 
forms of (4.7) and (4.9). A suitable form for p\tj is 

py: = AJw,  mnll) cosmnx cosh K ,  Bt(z - 1) exp (i0,) 
m 

+ A ,  exp (i0,) C b, sin nnx cosh K, B ~ ( z  - l), (4.13) 

whereK, = (nzn2 + Z2)t.Thesolution (4.13)clearlysatisfies (4.6)withtheright-handside 
equal to zero and the boundary conditions (4.7), (4.8). The coefficients b, in (4.13) are 
determined by substituting pi: into (4.9) in which cosmnx and xsinmnx are first 
expanded in terms of Fourier sine series; the result of these substitutions is 

n=l 
n+m 

W 

iAn, b,[(K, o,/Bi) sinh K, Bi - Z cosh K,Bi] sin nnx 
n = l  
n+nt 

= (K,,/Ba) sinh K,  Bi sin mnx d*m - 
dT 

where 

m 
I 

- iw,, mn cosh K ,  BiA,,, C c, sin nnx 
n = l  

m 

n = l  
+ i(lK,,, Btlsinh Kn, B*) A ,  C d, sin nnx, 

c,, = 0 for n = m, 
= 0 for n + m  even, 
= 4n/n(n2-ma) for n + m  odd, 

= 0 for n + m  even, 
= - 8mn/n2(m2 - n2)2 for n + m odd. 

d, = Q for n = m, 

(4.14) 

Upon equating the nth t'erm on the left-hand side of (4.14) to those with subscript n on 
the right-hand side we find 

d,  K,Bi/sinh K,,, Bh - C, w, mn cosh K,  B )  
(K, w,/B)) sinh K, B* - 1 cosh K, B)  b, = , n + m ,  (4.15) 

which, we note, is real. Upon equating to zero the terms with subscript m on the right- 
hand side of (4.14) we obtain 

dA ilB -m = - 
dT 2 sinhZK, Bt A m  

as the differential equation for A,. Equation (4.16) implies that 

where A,, = constant and 
A ,  = A,, exp ( - iw,, T ) ,  

om, = ZB/2 sinhZK, Bi > 0. 

Combining (4.17) with (4.1) we obtain 

(4.16) 

(4.17) 

(4.18) 

p(0) = A,,sinmnx cosh K ,  B*(z- l)exp{i[Zy-(o,+Sw,,)t]}. (4.19) 
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FIGURE 3. The corrected dispersion curves Q,(Z) (solid lines), as given by (4.22), compared with 
the classical curves w,(Z) (dashed lines), as given by (4.2), for various values of B. R, and 
w, = frequency and Z = wavenumber. In all cases, 6 = 0.4. For B = 10 and 1 (the values also 
used in figure 2 ) ,  the curves Q,(Z) and w,(l) are essentially identical on the scales shown and 
therefore have not. been plotted. 
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Thus we conclude that the lowest-order solution found by Rhines (1970) must contain 
a positive frequency correction in order to satisfy the next-order terms in the bottom 
boundary condition. Note that the phase speed of the wave is now given by 

B 
2 sinh2 K,  B’’ 

c, = (w, + Sw,,)/Z = B’ + 8  
K, tanh K,  Bl 

(4.20) 

which is always larger than the ‘classical value’ given by wm/Z. For bottom-trapped 
waves ( B  9 l) ,  the correction is exponentially small; for barotropic waves however 
( B  < l),  (4.20) gives the remarkably simple expression 

c,= ( l /K$)(I+@).  (4.21) 

The corrected dispersion relation Q,(Z), defined as 

1Bi + ZB Q,(Z) = w,+Swm0 = 
K ,  tanh K, Bh 2 sinhz K ,  Bk’ 

(4.22) 

is plotted in figure 3 for the case S = 0.4. As expected from (4.22), the difference 
between Q,(Z) and w,(Z) increases as B decreases in figure 3. In  particular, for very 
small B ( <  0(10-2)), the correction term gives a frequency increase of about 20% 
(figure 3c). 

Upon combining (4.11), (4.12), (4.13), (4.15), end (4.17) we note that ptl) is also 
proportional to exp ( - iwm0 St) and hence that the correction p(l) also travels with 
phase speed (4.20). Further we note that all the terms in p(’) are in phase with p(O) 
except for the term proportional to pl, which is in quadrature with p(O). For a north- 
south channel, however, this term drops out (see (3.20) with v = &r). 

5. Resonant interactions 
In  $ 4  we found that the higher-order terms in the bottom boundary condition 

produced an O(6) frequency correction in the lowest-order single-wave solution ~ ( 0 ) .  

We now consider the energy exchanges between a resonant triad of such (frequency 
corrected) waves, written in real form. Thus we shall be concerned with describing the 
evolution of the wave combination 

3 

q = 1  
p(O) = C Am~(T)sinrnq7rxcoshKmqB~(z- l)exp[i(8,,-wnlqoT)] 

+ C.C. (complex conjugate), (5.1) 

where Om, = Zqy-wm,(Zn)t and w,,(Zq) and wmq0(Zq) are given by (4.2) and (4.18) res- 
pectively. For notational convenience we write (5.1) in the following, less cumbersome 
form : 3 

p(O) = C A,(T)sinm,nxcoshK,Bt(z- 1)exp (i@,)+c.c., (5.2) 
q = l  

where K p  = (Zi + mi n2)i, 0, = Zq y - Q m q ( Z q )  t and 

The combination (5.2) represents a resonant triad of waves (ml, I,, Qml) ,  (mZ, I , ,  SZ,,), 
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FIGURE 4. Examples of graphical solutions to the resonance conditions (5.5b). In each part 
B = 0.25 and 6 = 0.4. Clmg = frequency and I,, = wavenumber. 
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with the resonant 

or equivalently 

where 1, > 0, Q,, 

(m3, 13, S2,J provided that the usual kinematic resonance conditions are satisfied: 

(5.4) m , ~ m 2 + m 3 = 0 .  
For definiteness, we shall consistently use the following form of (5.4) in conjunction 

I @ 1 _ + @ 2 + @ 3 = O ,  

triad (5.1) or (5.2): 

0 1  + 0 3  = 02, 
ml-m3 = -m2, ( 5 . 5 ~ )  

(5 .5b )  
1, + I ,  = I , ,  

m, - m3 = - m,, 
a m 1  + Qma = Qm,,  

> 0 and m, > 0, q = 1, 2,  3. The equations for the amplitude func- 
tions A,(T) will 6e derived in-the next section. Here we now show that the solution of 
(5 .5b)  can readily be obtained graphically from plots of the dispersion relation (5.3). 

Figure4 ( a )  showsthesolution of (5.5b)fora triad of long waves. Since the waves are 
non-dispersive for small 1 ((5.3) implies that Q, cc 1 as 1 -+ O), an infinity of parallelo- 
grams representing resonant triads can be constructed in the lower left corner of the 
Q,, 2 plane. Figure 4 ( b )  shows the solution of (5 .5b )  also for the case (m,, m,, m3) 
= (1, 2, 3), but for waves of very different lengths [one long (Il) and two short (Z2 
and 1,) waves]. Finally, an example of a resonant triad consisting of higher-order cross- 
channel modes is shown in figure 4 (c). 

It is important to note here that there is no one favoured resonant triad or one 
favoured discrete set of resonant triads dictated by the dispersion relation. In view of 
the continuum of triads possible, expecially at long wavelengths, it would be of interest 
to look at the evolution of the wave action spectrum to  see whether, for example, there 
is a continuous transfer of energy to the longer waves. 

6. The amplitude equations 
The equations for A,(T) are obtained by substituting the triad (5.1) into the right- 

hand side of the bottom boundary condition (3.30) (in which b = x) and then applying 
the resonance conditions (5 .5) .  The first step yields, after much tedious algebra, 

B-lpLj)- (l) = - 1 s  KqsinhKqB~d~exp(iOq)sinm,nx+c.c. 
pu Baq=l dT 

+ (12m3 + 1, m,) sin (m2 - m3) nx] + C.C. 

-- C P23A,A,*exp[i(0,-03)][(Z2m3+Z3m,)sin (m,+m,)nz 

+(l,m3-Z3m,)sin(m,-m3)nx] +c.c. 

yni 
2Bi i , 2 , 3  

m 

A, wmqmq exp [iO,] cosh Kq B )  2 CK sin nnx 
, = I  n=l  

3 gr 

sinhK,B* n = l  
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& = - Pkj = (cosh Kj  B*) K, sinh K, B* - (cosh Kk B))  K5 sinh K5 B), 
where 

and cQ, = 0 for n = m,, I = 0 for n + m ,  even, 
= 4n/n(n2-mE) for n+m, odd, 

= 0 for n+m, even, 
= - Sm, nln2(mt - n2)2 for n + mg odd. 

dQ, = 4 for n = mq, 

The symbol represents cyclic summation: 
1 , 2 , 3  

Z a 2 ~ 3  = a,a3+u3ul+a,a,. 
1, a,  3 

By balancing terms in the first summation and the cyclic summations in (6.1) accord- 
ing to ( 5 . 5 ~ )  we readily obtain the following equations for A,: 

(6.5) 
dA 
dT K, Sinh K, B )  -2 = is P31 A ,  A, ,  

dA 
K,~inhK,Bt-~ dT = - isG2A:A2,J 

where 0 < s = iyn(Z2m3-Z3m2) = )yn(Z3m,+Zlm3) = 4yn(Zlm2+Z2ml). (6.6) 
It is important to note that these very simple equations are obtained because we choose 
0, + 0, = 0, as past of the resonance conditions. If instead we used el + 8, = 8, (which 
involves the uncorrected frequencies wm)? each equation for A ,  would also contain an 
extra term proportional to A,. Also, it follows from (6.5) that, in terms of dimensional 
scales, the interaction time associated with (6.5) is t = O(l / fod2)  = O(l / fo Ro) in view 
of the fact that we chose y = Ro/S2 = O(1) .  

is given by (4.18), the terms in the second 
summation in (6.1) precisely cancel the three dgq terms in the last summation. The 
remaining terms on the right-hand side of (6.1) give rise to a forced, non-resonant wave 
solution p(l) which will be O(1)  and therefore will be small compared with the 
resonant triad p(O). The forced solution for p(l) can be obtained by a procedure similar 
to that carried out in $4,  but it will not be presented here. 

The equations (6.5) are of the standard form that arises in quadratic resonance 
problems and were first obtained by Bretherton (1964) in his resonance study based on 
a model one-dimensional wave equation. The first example of equations of the form 
(6.5) in an oceanic context was given by McGoldrick (1965) in his study of capillary- 
gravity waves. In  the limit B+ 0 (homogeneous fluid), (6.5) reduce to 

We note that, since = + and om 
P 
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The coupling coefficients appearing on the right-hand side of (6.7) were first obtained 
by Kenyon (1964), whereas a certain real form of (6.7) (see $7) was obtained by Lon- 
guet-Higgins & Gill (1967) for the case of divergent planetary waves (in which case 
Ki  in the denominator of each term on the right-hand side of (6.7) is replaced by 
Ki  + 1). Of course in these papers, s is not proportional to y ,  but to another parameter 
that multiplies the nonlinear terms in the governing equations. 

7. Analysis of amplitude equations 
It is fairly easy to obtain two integrals of (6.5), which correspond to conservation of 

total energy and generalized or potential enstrophy. To derive the first integral we 
multiply the first equation in (6.5) by cosh K, Bi A:, the second by cosh K, B* A,* and 
the third by cosh K, B) A;.  Then we add these equations to their complex conjugates. 
The result is, upon using (6.2), 

Thus 1 - C K,sinh 2K, B* 1AQ(2 = constant, 
Bi Q 

which states that the total energy in the triad is conserved. To see that this is the case, 
we first note that (3.4)-(3.8), (3.11) and (3.13) imply the following energy transfer 
equation: 

and p(0) is periodic in y with period 2~11. For the single-wave form 

p(O) = asinmn-xcos(Zy-o,t)cosh KmB*(z- l), 

it can be shown from (7.4) that 

1 E cc (a2Kmsinh 2K, B))/Bi. 

B-* a2Km sinh 2Km B* = constant, 

R, 

Hence (7.3) implies that 

(7.5) 

which is the single-wave case of (7.2). For B < 1 (homogeneous fluid), (7.2) gives the 
familiar barotropic energy conservation law for a resonant triad [ cf. Longuet-Higgins 
& Gill (1967)l: 3 

K$4,J2 = constant. 
q = 1  

The second conservation law that follows from (6 .5 )  takes the form 

1 3  - K,2sinh2KqB*1A,J2 = constant. 
B Q = l  
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Since for B < 1 (7.6) implies that the total enstrophy (vorticity squared) is conserved, 

C K4q = constant, 

(7.6) can be said to represent a ‘generalized’ enstrophy conservation law. Alterna- 
tively, (7.6) might be said to represent a ‘potential ’ enstrophy conservation law since, 
in a stratified fluid of uniform depth, the square of the potential vorticity is conserved 
in a resonant triad (Richman 1976). 

namely 3 

p = 1  

From (6.5) the following ‘energy sharing’ relations can be easily derived: 
K, sinh K,  B* d K,sinhK,B* d d~ IA312 

Pl2 
/jji IA1l2 = 

‘23 

- - K 2 s i n h K 2 B * & l n z j 2  P31 = 2sRe{iA,AzA3}. (7.7) 

Suppose there exists a resonant triad with the property that K, < K,  < K ,  (figure 
4(a)  is such an example). From (6.2) it can be shown that 

thus it follows that P,, > 0,  PI, > 0 and P31 < 0. Therefore for this triad, (7.7) implies 
that waves I and 2 are growing in amplitude a t  the expense of wave 3. If (7.7) is multi- 
plied by ( -  1) then the opposite situation occurs. In general, however, the energy 
transfer process is periodic. For a given set of initial conditions (say A,(O) = A,,, 
A2(0) = 0, A3(0)  = A,,), wave 2 will gradually grow in amplitude, extracting energy 
from waves 1 and 3; then, after a certain time, wave 2 will start to decay, losing its 
energy to waves 1 and 3 until the initial conditions are reached; then the process starts 
all over again. A formula for the period of this energy cycle will be given below. 

sgn (P,,) = sgn (Kk - K j ) ;  (7.8) 

The amplitude equations (6.5) become particularly simple for the triad 
(Qml, 4, m,) = ( O , O ,  2m) 

(Qmz,4,m2) = (Q,Lm), (Qm,,J3,m3) = -m). 
(a steady channel flow), 

(Note that we have relaxed the condition m, > 0 so that the two interacting waves are 
distinct.) In  this case K, = K, and therefore P,, = 0 and P,, = - P,,; thus (6.5) implies 
that A ,  = constant, i.e. the current acts as a catalyst only and does not participate in 
the energy exchange beteen waves 2 and 3. This triad was first discussed by Longuet- 
Higgins & Gill (1 967) for the case of a homogeneous fluid. 

Finally, it is instructive to transform (6.5) into a set of real equations for the moduli 
and phases of A,, q = 1 , 2 , 3 .  If we let 

4p) = exp W,(m 
where a, and 4, are real functions, then (6.5) gives 

K, sinh K, B* a, = sP2, a, a, sin $, 
K, sinh K, B* a, = sP31 a3 a, sin 4, 
K,  sinh K, a, = se, ul u2 sin $, 

a, K, sinh K ,  B* 4, = - sP,, a, a, cos 4, 
a, K, sinh K, B* 4, = sP,, a, a, cos 4, 
a, K, sinh K, B* $3 = - sP,, a, a2 cos 4, 

where * = d / d T  and q5 = q5, - 4, - q5,. 

(7.9) 

(7.10) 

(7.11) 



788 L. A .  Mysak 

Two special cases are of interest. When qi = 0 or IT, (7.10) and (7.11) imply that 
a, = constant (no energy exchange between the waves) and that qi, cc T + constant. It 
is fairly easy to show that the constants of integration can be chosen to make q5 = 0 or 
n, even though each qiq varies linearly with T. When qi = $n or In, (7.1 1) gives q5* = con- 
stant and the set (7.10) reduces to the classical gyroscopic equations, which can be 
integrated in terms of elliptic functions. Note that, when qi = +nor In, thegrowth rates 
of the amplitudes are maximized. Therefore this case is of most interest physically. 
Intermediate cases (9 + 0, in, IT, Qn) have been analysed by McGoldrick (1 970) and the 
results are qualitatively similar to the maximum growth rate solutions. 

For the sake of completeness we now write down a particular maximum growth rate 
solution. We take qi = #n and a triad such that 

(7.12) K ,  < K ,  < K,. 

Then (7.10) reduces to d, = - C2,a2a3, 
u 2  = C13a3a1, 

4, = - c12 a, a,, 

where 8e.j cii = i * j * + ,  K ,  sinh K,  B )  ' 
> O  

in view of (7.8) and (7.12). Further we suppose that 

i a1(0) = a10 > 0, 
ado) = 0, 
a,(O) = as0 > 0. 

(7.13) 

(7.14) 

(7.15) 

The solution of (7.13) and (7.15) is given by (in the notation of Milne-Thomson 1950) 

(7.16) 

(7.17) where m = C,, a,2,/C12 ay0 < 1. 

If rn > 1, the following transformations must be used in (7.16) (Milne-Thomson 1950, 

sn(u/rn) = m-tsn(urnt[m-l), p. 19): 

cn (u/m) = du (urntlm-l), 

dn (u/m) = cu (umtjm-'). 

1 %(TI = a,, dn [a10 (C12C13)* Tlml, 

a , ~ )  = a30 cn lalo (c,, c13)+ T I ~ I ,  
= a30(C13/C12)t sn [%O (c12c13)' Iml, 

If m = 1, the elliptic functions in (7.16) reduce to hyperbolic functions: 

(7.18) 1 = %Osech [%o (C12C13)tT1, 

= u30(c13/c12)' tanh LalO (C12C13)t 

= a30 sech lalo (c12c13)* 

The solution (7.1 6) corresponds to the case where wave 2 continually extracts energy 
from waves 1 and 3 during the time interval 0 < T < iTd, where TC? denotes the period 
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of dn. Then during the time interval $T, < T < T,, the energy transfer is reversed, with 
waves 1 and 3 continually growing at  the expense of wave 2 until the initial conditions 
are reached. The time over which this energy cycle takes place is 

T d  = 2K(m)/a,o(C1, C1,)4 (7.19) 

where K(m)  (m < 1) denotes the complete elliptic integral of the first kind. In particu- 
lar we note that K(m)  f as m .f, with K ( 1 )  = co. Thus in the special case m = 1 [i.e. 
solution (7.18)], wave 2 takes an infinitely long time to extract energy from waves 1 
and 3. 

L = 40m, 
H = 1000m, 

U = 0.3m s--l, 
a = 1 . 5 ~  loF2, > (8.1) 

this paper: 
S = a L / H  = 0.6, 

RO = U / f o L  = 0.058, 
y = Ro/S2 = 0.16, 

= 0.25. N2H2/f,2 
L2 B =  

Further, upon using (2.12) it is found that the dimensional wavelength and period of a 
wave with non-dimensional wavenumber and frequency 1 and Q respectively are given 

A, = (25111) km, 
T, = (0-93/Q) days. 

Figure 6, which is plotted for S = 0-6  and B = 0-25 [the values in (8.2)], shows an 
example of a resonant triad that could exist over the Norwegian slope where the above 
study was made. The triad is characterized by 

8. Application to Norwegian Current fluctuations 
A large-scale observational study of the Norwegian Current was carried out by the 

Institut fur Meereskunde, Kiel, from 22 July to 5 September 1969. A detailed analysis 
of the data collected during this study is presented in Horn & Schott (1 976). In  par- 
ticular, they found that, at  all depths, the current spectra were broadly peaked a t  
around three days; however, they also found a considerable amount of energy at 
lower frequencies (see figure 5). The region studied is characterized by the following 
scales: 
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FIGURE 5. Spectra of the longshore (IT) and offshore (V) current fluctuations at different depths at 
a mooring station in the middle of the Norwegian Current, immediately west of Alsesund, 
Norway. The water depth at this station, which is just beyond the edge of the shelf, is 605 m. 
The number of degrees of freedom, k, is given, as well as the 95 yo confidence bars (from Mysak & 
Schott 1977). 

which is in accordance with the resonance conditions (5.5 b ) .  Using (8.3) we find that the 
corresponding wavelengths and periods are 

(Awl,Twl) = (418km,9*3d) 
(Aw2, Tw2) = (52*8km, 3.0d). 
(Aw3, Twg) = (60.5 km, 4.4d). 

Thus the interaction is between one long, low-frequency wave and two short, high- 
frequency waves, the latter having periods near the observed spectral peaks. From 
(8.4) it follows that 

K ,  = 3.20, K ,  = 7.88, K3 = 10.30, (8.6) 
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FIGURE 6. Example of a resonant triad that could exist over the Norwegian continent,al slope. 
The dispersion curves are plotted for 8 = 0.6 and B = 0.25. am, = frequency, I ,  = wave- 
number. 

so that K, < K, < K,, in accordance with (7.12). Thus for the initial conditions (7.15), 
the evolution of the waves’ amplitudes is described by (7.16), provided m < 1. Using 
(8.2) and (8.6) in (7.14) we find that C,, = 0.55, C,, = 12-1 and C,, = 1.06 x lo3. Thus 
from (7.17) we see that m < 1 provided < ale. In view of the latter inequality, we 
see from (7.16) that this triad represents the interaction between one ‘large’ amplitude, 
long, low -frequency wave and two ‘small ’ amplitude, short, high-frequency waves. 
Since the observed current spectra a t  all depths show a considerable amount of energy 
at periods of four days and longer, as well as the peak at  three days, it is quite plausible 
that resonant interactions between waves of the scales discussed here could take place 
over the Norwegian continental slope and could serve as a mechanism to transfer 
energy to larger periods and length scales. However, it should be emphasized that since 
the spectral peak a t  around three days is very broad and since there are no spectral 
peaks a t  around four and nine days, the example we have given is by no means unique. 
Indeed, because the spectrum is so broad-banded, a continuum theory of theseresonant 
interactions may in fact be required before we can conclusively establish the existence 
of this energy process. Work on this extension of the theory is now in progress and will 
be reported in a future paper. Also, another important question concerns the role of the 
Norwegian Current itself and whether it may provide an energy source for these reso- 
nant waves, In this connexion, it might be worthwhile to study the evolution of a triad 
in which one wave is unstable on a mean flow. Such a problem was studied by Loesch 
(1974) for the case for a baroclinic fluid of uniform depth. 
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9. Summary and conclusions 
The weak nonlinear interactions between topographic planetary waves in a con- 

tinuously stratified fluid have been analysed theoretically. For the case of constant 
stratification and a channel of uniform bottom slope, the following results were 
obtained. 

(i) The lowest-order solution for a single wave travelling down the channel must 
contain a positive frequency correction (SO) in order to satisfy higher-order terms in 
the bottom boundary condition. This frequency correction increases monotonically 
with decreasing stratification (i.e. Burgers number). 

(ii) The amplitudes of a triad of such waves containing the frequency correction are 
governed by the classical gyroscopic equations that arise in most quadratic resonant 
interaction problems. These amplitudes evolve on the slow dimensional time 

t = O(l/j062) = O(l/joRo). 

In  the limit of weak stratification (B  -+ 0 ) ,  the amplitude equations reduce to the form 
derived by Longuet-Higgins & Gill (1967). 

(iii) For the Norwegian continental slope region, there may exist resonant triads 
consisting of two short, high-frequency waves and one long, low-frequency wave. 

It is suggested that wherever there exist weak quasi-geostrophic motions over a 
steeply sloping topography [bottom slope O( the possibility of resonant 
interactions between bottom-trapped waves should be considered. In  the recent 
MODE experiment small-scale, bottom-intensified motions were found over regions 
of steep topography (Huppert & Bryan 1976). Further, recent numerical spin-down 
experiments in which the MODE area topography is used show the presence of deep, 
small-scale eddies (about 50 km across) over regions of steep bottom slopes (Owens & 
Bretherton 1977). It may be worthwhile to see whether one of these bottom-trapped 
eddies can be modelled by a resonant triad of the type discussed in this paper. 

This paper was written while the author was visiting the National Center for Atmos- 
pheric Research (Oceanography Project) during the period February-August 1977. 
The National Center for Atmospheric Research is sponsored by the National Science 
Foundation. Throughout the course of this work the author had helpful discussions 
with Dr F. P. Bretherton, Dr P. Gent, Dr G. Holloway and Dr J. C. McWilliams. The 
author is also indebted to Mrs Julianna Chow for plotting figures 2-4 and to Ms Karla 
Nolan for typing the manuscript. 
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